Advanced Oncology Certified Nurse Practitioner

REVIEW COURSE 2024

October 10-12, 2024 | Houston, TX

MDAnderson Cancer Center

Making Cancer History*

Endocrine (Hormone) Therapy in Cancer Treatment

OBJECTIVES

- Describe the mechanisms of action for endocrine therapy for select tumors
- Identify classifications and associated side effects and health risks of endocrine therapy for prostate and breast cancer
- Discuss prevention and treatment strategies for select side effects of endocrine therapy

Systemic Treatments for Cancer

Chemotherapy		Targeted Therapy		
		Endocrine Therapy	Molecular Targeted	Immuno Targeted Therapy
Target:	Fast growing cells (both cancer cells and certain populations of normal cells)	Tumors cells that express hormone receptors & thrive in a hormonal environment	Gene/protein molecules and pathways that cancer cells use to proliferate, metastasize and avoid apoptosis	Cells and pathways of the Immune system
Based on:	Principles of cell kinetics and cell cycle	Hormonally driven tumors via cell signaling e.g. prostate, breast, ovarian cancers	Gene mutations specific to patient's cancer that cause dysregulated cell signaling	Theory of immunosurveillance and immune system manipulation

Use of Hormones to Treat Cancer

Role of endocrine therapy is well established in:

- Prostate cancer (90% are androgen drive initially)
- Estrogen receptor/Progesterone receptor positive breast cancer (70-75% estrogen driven) → also known as hormone+ (HR+)
- Limited use in select recurrent or metastatic ovarian and endometrial uterine cancers
- May also be used for adrenal, thyroid and androgen-sensitive salivary gland cancers

Hormone therapy can work by:

- stopping the production of a certain hormone
- blocking or degrading the hormone's receptors

Androgen Deprivation Therapy (ADT) in Prostate Cancer

Used in localized, locally advanced, and metastatic prostate cancer

- For localized disease \rightarrow if PSA level starts to rise after surgery and/or radiation therapy, start ADT
- For localized disease and intermediate-risk or high- risk features \rightarrow in combination with definitive RT
 - For intermediate-risk \rightarrow at least 4 to 6 months of ADT
 - For high-risk \rightarrow ADT for 2 to 3 years
- In metastatic disease if tumor and rogen sensitive \rightarrow use until castrate resistant
 - could be used alone, combination with chemo, or dual ADT blockade with a 2nd generation androgen targeted therapy

Hypothalamic-Pituitary-Gonadal Axis

Males

Surgical Castration

• Bilateral Orchiectomy

Medical (Chemical) Castration-

Androgen Deprivation Therapy ADT androgen axis inhibitors

- 1. and rogen synthesis inhibitors
- 2. and rogen receptor inhibitors

Permission from Professor Peter Koopman, PhD, FAA http://www.dsdgenetics.org

Hormone Therapies: Prostate Cancer

Categories of Hormone Therapies	Examples
 Luteinizing hormone-releasing hormone (LHRH) agonists Stop testicular androgen production over several weeks & may have initial "androgen flare" Concerned about SCC or ureteral obstruction with big tumor burden; initially give antiandrogen concurrently 	Leuprolide (Lupron [®]) Goserelin (Zoladex [®]) Histrelin (Vantas [®]) Triptorelin (Trelstar [®])
LHRH antagonistsStop androgen production immediately; no "flare"	Degarelix (Firmagon [®]) injection Relugolix (Orgovyx [®]) po
 Androgen Synthesis Inhibitor (CYP17 Inhibitors) Stop adrenal androgen production; steroid needed to avoid ↓ K+, hypertension, & fluid retention 	Abiraterone with methylprednisolone or prednisone (Zytiga [®]) (Yonsa [®])
 Antiandrogens Compete with androgens for receptor site Not used alone, in combination 	1 st - Nilutamde, Flutamide or Bicalutamide 2 nd –Enzalutamide, Apalutamide, Darolutamide

Side Effects with Androgen Deprivation Therapy (ADT)

ADT Related Symptoms

- Vasomotor s/s (hot flashes/night sweats)
- Urinary complaints, sexual dysfunction (decreased libido, erectile dysfunction)
- Sleep disturbance, mood disturbance, depression,
- Cognitive dysfunction
- Arthralgias/myalgias, and fatigue
- Gynecomastia, \downarrow penis and testicle size
- \downarrow muscle mass (sarcopenia), \uparrow body fat
- Thinning of body hair

ADT Related Health Risks

- Acute renal injury
- Anemia
- Cardiovascular disease**
 - Prolongation of QT/QTc interval
- Diabetes mellitus (new onset)**
 - Reduced insulin sensitivity
- Osteoporosis/ bone fractures
- Venous thromboembolic disease
- **Relugolix has much less effect on metabolic syndrome profile than LHRH agonists with a faster time to reduce androgen levels

Hypothalamic-Pituitary-Gonadal Axis

FEMALES

70-75% of breast cancers are estrogen driven \rightarrow also known as hormone+ (HR+)

Ovarian ablation

surgery- oophorectomy

Ovarian suppression

Use depends on hormone status (ER/PR) and Menopausal status

- Premenopausal (consider ovarian suppression/ablation)
- Postmenopausal

Menopause – NCCN Definition

- Definition- permanent cessation of menses with permanent \downarrow in ovarian estrogen synthesis
 - Usually a clinical diagnosis made after 12 months of amenorrhea
 - Natural menopause occurs between ages 42 and 58 years
- Menopausal status important \rightarrow used to select endocrine therapy for breast cancer NCCN, 2024

Criteria to determine menopause in breast cancer pts include any of the following:

- Prior bilateral oophorectomy
- Age ≥ 60 years
- Age <60 years with amenorrhea for ≥ 12 months in absence of prior chemotherapy, tamoxifen, toremifene or ovarian suppression AND estradiol (<30 pg/mL) and FSH (≥30 mIU/mL) in postmenopausal range
- Age < 60:
 - Chemotherapy- or tamoxifen induced amenorrhea for ≥ 12 months with estradiol and FSH in post-menopausal range on <u>serial</u> <u>measurements</u>

NCCN, 2024

** Menopausal status cannot be determined if pt receiving ovarian function suppression

Hormone therapies: Breast Cancer

Categories of Hormone Therapies	Examples
 Selective estrogen receptor modulators (SERMs) selectively blocks estrogen receptors in breast tissue 	Tamoxifen (Soltamox [®]) (for treatment & prevention)
 Selective estrogen receptor down regulators (SERDs) block the effects of estrogen in breast tissue 	Fulvestrant (Faslodex [®])
 Aromatase inhibitors (AI) Inhibit the action of the enzyme aromatase, which converts androgens into estrogens 	Anastrozole (Arimidex [®]) Letrozole (Femara [®]) Exemestane (Aromasin [®])
Luteinizing hormone-releasing hormone (LHRH) agonists stops ovarian estrogen production	Leuprolide (Lupron [®]) Goserelin (Zoladex [®])

Hormone Therapy in Breast Cancer

For localized disease

Complete primary therapy (surgery, RT, chemotherapy) \rightarrow then start antiestrogen,

• If taking anti Her2 therapy, start with the maintenance anti Her-2 therapy

 $PreMenopausal \rightarrow Tamoxifen \ for \ 5yr$

- IF remains premenopausal
 - Take tamoxifen for another 5 yrs (10 yrs total) **OR**
 - Switch to an AI + ovarian suppression x5 yrs
- If becomes post menopausal
 - Take tamoxifen for another 5 yrs (10 yrs total) OR
 - Switch to an AI x5 yrs
- *AI must be taken with ovarian suppression...(LHRH agonists)

Post Menopausal

- Tamoxifen for 5 to 10 years
- An Al for 5 to 10 years
- Tamoxifen x5 years, followed by AI for up to 5 years→ total 10 years of hormonal tx
- Tamoxifen for 2 to 3 years, followed by 2 to 8 years of an AI for a total of 5 to 10 years of hormonal tx

Hormone Therapy in Breast Cancer

For metastatic disease AI preferred over Tamoxifen

- May start with hormone therapy alone, prefer a 2 drug approach AI + CDK4/6 inhibitor
- If very symptomatic and/or visceral disease, may start with chemo x4-6 course and then hormone therapy
- AI + CDK 4/6 inhibitor (if premenopausal must add the LHRH angonist)
- Fulvestratran + CDK 4/6 inhibitor (if premenopausal must add the LHRH agonist)

Cyclin-dependent kinases (CDKs)

- Protein kinases that are "gatekeepers" to control transition through cell cycle
 - Transition between G1 and S is key checkpoint regulated by CDK 4/6 to protect against abnormal DNA replication
- CDK4 and CDK6 regulate proliferation in some epithelial cells, including ER-positive breast cancers, in which estrogen induces CDK4 and CDK6 activation
- Aromatase inhibitors and antiestrogens have been shown to suppress CDK4/6
- Reactivation of these kinases is one proposed mechanism of endocrine resistance
- CDK4/6 inhibitors, abemaciclib, palbociclib, and ribociclib are FDA approved for the treatment of ER-positive metastatic breast cancer in combination with antiestrogen therapies
- Inhibition of CDK4/6 blocks cell progression from G1 to S, causing cell cycle arrest
- No biomarkers have been identified to predict benefit from CDK inhibitors

Cyclin-dependent kinases (CDKs)

- No differences in efficacy, but some differences in S/E profile
- Myelosuppression, liver toxicity, diarrhea, rhythm disturbances
- Palbociclib and Ribociclib are associated with higher rates of neutropenia than abemaciclib
- Abemaciclib more frequently causes diarrhea
- Ribociclib has a highest incidence of liver function test abnormalities than other agents and can cause QTc prolongation, → may be less preferred for some patients (eg, those on QTc-prolonging agents)
- Abemaciclib is preferred CDK inhibitor in setting of brain metastases

Side Effects with Anti Estrogen Therapy in Breast Cancer

Menopause Related Symptoms

- Hot flashes/night sweats
- Vaginal dryness
- Urinary complaints
- Sexual dysfunction (dyspareunia)
- Sleep disturbance, mood disturbance, depression
- Cognitive
- Arthralgias/myalgias
- Fatigue

Menopause Related Health Risks

- Osteoporosis/bone fractures
- Cardiovascular disease

Thank you!

kmishaw@mdanderson.org

REVIEW COURSE 2024

October 10-12, 2024 | Houston, TX

MDAnderson Cancer Center

Making Cancer History*